Vol. 21 No. 1 (2022)
Literature Review

How stem cell therapy can act in the treatment of patients with Covid-19

Published 2022-07-04

Keywords

  • SARS-CoV-2,
  • Covid-19,
  • Mesenchymal stem cells,
  • Immunomodulation,
  • Cell therapy

How to Cite

1.
A. Rainho M, de A. Azevedo A, C. Paris G, L. Ferreira A, M. de A. Azevedo Y, L. T. Sodré J, F. de L. Mynssen G, P. de Oliveira G, R. Silva K, A. C. Cortez E, C. Stumbo A, N. Carvalho S, de Carvalho L, A. Thole A. How stem cell therapy can act in the treatment of patients with Covid-19. BJHBS [Internet]. 2022 Jul. 4 [cited 2024 Dec. 3];21(1):54-60. Available from: https://bjhbs.hupe.uerj.br/bjhbs/article/view/26

Abstract

Introduction: The emergence of a new coronavirus has changed the world and caused one of the biggest global health crises of the past 100 years. The protagonist of the pandemic, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is responsible for the coronavirus disease 2019 (Covid-19), which leads to dysfunctions in a plethora of systems, especially in severe cases. Therefore, researchers and healthcare professionals are making great efforts to develop a therapy that helps the many organs affected by the disease, for which mesenchymal stem cells (MSCs) arise as promising candidates. MSCs can offer benefits at different phases of Covid-19, since they have important anti-inflammatory and tissue repair properties. Objective: This review aims to elucidate how MSCs can contribute in the Covid-19 scenario by considering their properties and mechanisms of action. Methods: A review of the scientific literature was conducted on electronic databases, such as PubMed, Scielo and Web of Science, in the period of 2020-2021. Results: Therapeutic effects of MSCs in preclinical models of respiratory, nervous, renal, and cardiovascular systems were observed. Conclusion: MSCs can be a therapeutic resource for patients with severe Covid-19.

Metrics

Metrics Loading ...

References

  1. WHO. Coronavirus Disease (Covid-19) Situation Reports. Situat Reports WHO Accessed June 30, 2021; 2021
  2. Candido DDS, Watts A, Abade L, et al. Routes for Covid-19 importation in Brazil. J Travel Med. 2020 May;27(3). doi: 10.1093/jtm/taaa042
  3. Gorbalenya AE, Baker SC, Baric RS, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44. doi: 10.1038/s41564-020-0695-z
  4. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9. doi: 10.1038/s41586-020-2008-3
  5. Jin Y, Yang H, Ji W, et al. Virology, epidemiology, pathogenesis, and control of Covid-19. Viruses. 2020;12(4):1–17. doi: 10.3390/v12040372
  6. Li M-YY, Li L, Zhang Y, et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020 Apr;9(1):45. doi: 10.1186/s40249-020-00662-x
  7. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in Covid-19. Vol. 75, Allergy: European Journal of Allergy and Clinical Immunology. Blackwell Publishing Ltd; 2020. p. 1564–81. doi: 10.1111/all.14364
  8. Meyerowitz EA, Richterman A, Gandhi RT, et al. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Ann Intern Med. 2021;174(1):69–79. doi: 10.7326/M20-5008
  9. Robba C, Battaglini D, Pelosi P, et al. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev Respir Med. 2020 Sep;14(9):865–8. doi: 10.1080/17476348.2020.1778470
  10. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5. doi: 10.1016/j.ijid.2020.03.017
  11. Li Y, Tenchov R, Smoot J, et al. A Comprehensive Review of the Global Efforts on Covid-19 Vaccine Development. ACS Cent Sci. 2021 Apr;7(4):512–33. doi: 10.1021/acscentsci.1c00120
  12. Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. doi: 10.1186/s13287-019-1165-5
  13. Eguizabal C, Aran B, Chuva de Sousa Lopes SM, et al. Two decades of embryonic stem cells: a historical overview. Hum Reprod Open. 2019 Jan;2019(1). doi: 10.1093/hropen/hoy024
  14. Esquivel D, Mishra R, Soni P, et al. Stem Cells Therapy as a Possible Therapeutic Option in Treating Covid-19 Patients. Stem Cell Rev Reports. 2021;17(1):144–52. doi: 10.1007/s12015-020-10017-6
  15. Dabrowska S, Andrzejewska A, Janowski M, et al. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Outlook for Inflammatory and Degenerative Diseases. Front Immunol. 2021;11:3809. doi: 10.3389/fimmu.2020.591065
  16. Verma YK, Verma R, Tyagi N, et al. Covid-19 and its Therapeutics: Special Emphasis on Mesenchymal Stem Cells Based Therapy. Stem cell Rev reports. 2021 Feb;17(1):113–31. doi: 10.1007/s12015-020-10037-2
  17. Rezakhani L, Kelishadrokhi AF, Soleimanizadeh A, et al. Mesenchymal stem cell (MSC)-derived exosomes as a cell-free therapy for patients Infected with Covid-19: Real opportunities and range of promises. Chem Phys Lipids. 2021 Jan;234:105009. doi: 10.1016/j.chemphyslip.2020.105009
  18. Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9(1):63. doi: 10.1186/s13287-018-0791-7
  19. Vasquez-Bonilla WO, Orozco R, Argueta V, et al. A review of the main histopathological findings in coronavirus disease 2019. Hum Pathol. 2020;105:74-83. doi: 10.1016/j.humpath.2020.07.023
  20. Schaefer I-M, Padera RF, Solomon IH, et al. In situ detection of SARS-CoV-2 in lungs and airways of patients with Covid-19. Mod Pathol. 2020;33(11):2104-14. doi: 10.1038/s41379-020-0595-z
  21. Bikdeli B, Madhavan M V., Jimenez D, et al. Covid-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. Vol. 75, Journal of the American College of Cardiology. Elsevier USA; 2020. p. 2950-73. doi: 10.1016/j.jacc.2020.04.031
  22. Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov. 2021;7(1). doi: 10.1038/s41420-021-00477-1
  23. Hu B, Huang S, Yin L. The cytokine storm and Covid-19. J Med Virol. 2021 Jan;93(1):250–6. doi: 10.1002/jmv.26232
  24. Liu S, Peng D, Qiu H, et al. Mesenchymal stem cells as a potential therapy for Covid-19. Stem Cell Res Ther. 2020;11(1):169. doi: 10.1186/s13287-020-01678-8
  25. Lindoso RS, Collino F, Bruno S, et al. Extracellular Vesicles Released from Mesenchymal Stromal Cells Modulate miRNA in Renal Tubular Cells and Inhibit ATP Depletion Injury. Stem Cells Dev. 2014 Mar;23(15):1809–19. doi: 10.1089/scd.2013.0618
  26. Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther. 2018;9(1):17. doi: 10.1186/s13287-018-0774-8
  27. Laffey JG, Matthay MA. Cell-based therapy for acute respiratory distress syndrome: Biology and potential therapeutic value. Vol. 196, American Journal of Respiratory and Critical Care Medicine. American Thoracic Society; 2017. p. 266–73. doi: 10.1164/rccm.201701-0107CP
  28. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe Covid-19 infection: A report of five cases. Transl Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007
  29. Islam MN, Das SR, Emin MT, et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–65. doi: 10.1038/nm.2736
  30. Court AC, Le-Gatt A, Luz-Crawford P, et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 2020 Feb;21(2). doi: 10.15252/embr.201948052
  31. Németh K, Leelahavanichkul A, Yuen PST, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9. doi: 10.1038/nm.1905
  32. Wang J, Jiang M, Chen X, et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 Covid-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020 Jul;108(1):17–41. doi: 10.1002/JLB.3COVR0520-272R
  33. Giustino G, Pinney SP, Lala A, et al. Coronavirus and Cardiovascular Disease, Myocardial Injury, and Arrhythmia: JACC Focus Seminar. J Am Coll Cardiol. 2020;76(17):2011–23. doi: 10.1016/j.jacc.2020.08.059
  34. Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: Mechanisms of potential therapeutic benefit in ARDS and sepsis. Vol. 2, The Lancet Respiratory Medicine. Lancet Publishing Group; 2014. p. 1016–26. doi: 10.1016/S2213-2600(14)70217-6
  35. Allison SJ. SARS-CoV-2 infection of kidney organoids prevented with soluble human ACE2. Nat Rev Nephrol. 2020;16(6):316. doi: 10.1038/s41581-020-0291-8
  36. Lira R, Oliveira M, Martins M, et al. Transplantation of bone marrow-derived MSCs improves renal function and Na++K+-ATPase activity in rats with renovascular hypertension. Cell Tissue Res. 2017 Aug;369(2):287–301. doi: 10.1007/s00441-017-2602-3
  37. Curley GF, Ansari B, Hayes M, et al. Effects of Intratracheal Mesenchymal Stromal Cell Therapy during Recovery and Resolution after Ventilator-induced Lung Injury. Anesthesiology. 2013 Apr;118(4):924–32. doi: 10.1097/ALN.0b013e318287ba08
  38. Pittenger MF, Discher DE, Péault BM, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regen Med. 2019;4(1):22. doi: 10.1038/s41536-019-0083-6
  39. Avanzini MA, Mura M, Percivalle E, et al. Human mesenchymal stromal cells do not express ACE2 and TMPRSS2 and are not permissive to SARS-CoV-2 infection. Stem Cells Transl Med. 2021 Apr;10(4):636-42. doi: 10.1002/sctm.20-0385
  40. de Oliveira GP, Cortez E, Araujo GJ, et al. Impaired mitochondrial function and reduced viability in bone marrow cells of obese mice. Cell Tissue Res. 2014 Jul;357(1):185–94. doi: 10.1007/s00441-014-1857-1